Metamath Proof Explorer


Theorem cnfldms

Description: The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Assertion cnfldms fldMetSp

Proof

Step Hyp Ref Expression
1 cnmet absMet
2 eqid MetOpenabs=MetOpenabs
3 cnxmet abs∞Met
4 2 mopntopon abs∞MetMetOpenabsTopOn
5 cnfldbas =Basefld
6 cnfldtset MetOpenabs=TopSetfld
7 5 6 topontopn MetOpenabsTopOnMetOpenabs=TopOpenfld
8 3 4 7 mp2b MetOpenabs=TopOpenfld
9 absf abs:
10 subf :×
11 fco abs::×abs:×
12 9 10 11 mp2an abs:×
13 ffn abs:×absFn×
14 fnresdm absFn×abs×=abs
15 12 13 14 mp2b abs×=abs
16 cnfldds abs=distfld
17 16 reseq1i abs×=distfld×
18 15 17 eqtr3i abs=distfld×
19 8 5 18 isms2 fldMetSpabsMetMetOpenabs=MetOpenabs
20 1 2 19 mpbir2an fldMetSp