Metamath Proof Explorer


Theorem isms2

Description: Express the predicate " <. X , D >. is a metric space" with underlying set X and distance function D . (Contributed by NM, 27-Aug-2006) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypotheses isms.j J=TopOpenK
isms.x X=BaseK
isms.d D=distKX×X
Assertion isms2 KMetSpDMetXJ=MetOpenD

Proof

Step Hyp Ref Expression
1 isms.j J=TopOpenK
2 isms.x X=BaseK
3 isms.d D=distKX×X
4 1 2 3 isxms2 K∞MetSpD∞MetXJ=MetOpenD
5 4 anbi1i K∞MetSpDMetXD∞MetXJ=MetOpenDDMetX
6 1 2 3 isms KMetSpK∞MetSpDMetX
7 metxmet DMetXD∞MetX
8 7 pm4.71ri DMetXD∞MetXDMetX
9 8 anbi1i DMetXJ=MetOpenDD∞MetXDMetXJ=MetOpenD
10 an32 D∞MetXDMetXJ=MetOpenDD∞MetXJ=MetOpenDDMetX
11 9 10 bitri DMetXJ=MetOpenDD∞MetXJ=MetOpenDDMetX
12 5 6 11 3bitr4i KMetSpDMetXJ=MetOpenD