Metamath Proof Explorer


Definition df-xms

Description: Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion df-xms ∞MetSp=fTopSp|TopOpenf=MetOpendistfBasef×Basef

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxms class∞MetSp
1 vf setvarf
2 ctps classTopSp
3 ctopn classTopOpen
4 1 cv setvarf
5 4 3 cfv classTopOpenf
6 cmopn classMetOpen
7 cds classdist
8 4 7 cfv classdistf
9 cbs classBase
10 4 9 cfv classBasef
11 10 10 cxp classBasef×Basef
12 8 11 cres classdistfBasef×Basef
13 12 6 cfv classMetOpendistfBasef×Basef
14 5 13 wceq wffTopOpenf=MetOpendistfBasef×Basef
15 14 1 2 crab classfTopSp|TopOpenf=MetOpendistfBasef×Basef
16 0 15 wceq wff∞MetSp=fTopSp|TopOpenf=MetOpendistfBasef×Basef