Metamath Proof Explorer


Definition df-xms

Description: Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion df-xms ∞MetSp = { 𝑓 ∈ TopSp ∣ ( TopOpen β€˜ 𝑓 ) = ( MetOpen β€˜ ( ( dist β€˜ 𝑓 ) β†Ύ ( ( Base β€˜ 𝑓 ) Γ— ( Base β€˜ 𝑓 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxms ⊒ ∞MetSp
1 vf ⊒ 𝑓
2 ctps ⊒ TopSp
3 ctopn ⊒ TopOpen
4 1 cv ⊒ 𝑓
5 4 3 cfv ⊒ ( TopOpen β€˜ 𝑓 )
6 cmopn ⊒ MetOpen
7 cds ⊒ dist
8 4 7 cfv ⊒ ( dist β€˜ 𝑓 )
9 cbs ⊒ Base
10 4 9 cfv ⊒ ( Base β€˜ 𝑓 )
11 10 10 cxp ⊒ ( ( Base β€˜ 𝑓 ) Γ— ( Base β€˜ 𝑓 ) )
12 8 11 cres ⊒ ( ( dist β€˜ 𝑓 ) β†Ύ ( ( Base β€˜ 𝑓 ) Γ— ( Base β€˜ 𝑓 ) ) )
13 12 6 cfv ⊒ ( MetOpen β€˜ ( ( dist β€˜ 𝑓 ) β†Ύ ( ( Base β€˜ 𝑓 ) Γ— ( Base β€˜ 𝑓 ) ) ) )
14 5 13 wceq ⊒ ( TopOpen β€˜ 𝑓 ) = ( MetOpen β€˜ ( ( dist β€˜ 𝑓 ) β†Ύ ( ( Base β€˜ 𝑓 ) Γ— ( Base β€˜ 𝑓 ) ) ) )
15 14 1 2 crab ⊒ { 𝑓 ∈ TopSp ∣ ( TopOpen β€˜ 𝑓 ) = ( MetOpen β€˜ ( ( dist β€˜ 𝑓 ) β†Ύ ( ( Base β€˜ 𝑓 ) Γ— ( Base β€˜ 𝑓 ) ) ) ) }
16 0 15 wceq ⊒ ∞MetSp = { 𝑓 ∈ TopSp ∣ ( TopOpen β€˜ 𝑓 ) = ( MetOpen β€˜ ( ( dist β€˜ 𝑓 ) β†Ύ ( ( Base β€˜ 𝑓 ) Γ— ( Base β€˜ 𝑓 ) ) ) ) }