Step |
Hyp |
Ref |
Expression |
0 |
|
cxms |
β’ βMetSp |
1 |
|
vf |
β’ π |
2 |
|
ctps |
β’ TopSp |
3 |
|
ctopn |
β’ TopOpen |
4 |
1
|
cv |
β’ π |
5 |
4 3
|
cfv |
β’ ( TopOpen β π ) |
6 |
|
cmopn |
β’ MetOpen |
7 |
|
cds |
β’ dist |
8 |
4 7
|
cfv |
β’ ( dist β π ) |
9 |
|
cbs |
β’ Base |
10 |
4 9
|
cfv |
β’ ( Base β π ) |
11 |
10 10
|
cxp |
β’ ( ( Base β π ) Γ ( Base β π ) ) |
12 |
8 11
|
cres |
β’ ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) |
13 |
12 6
|
cfv |
β’ ( MetOpen β ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) ) |
14 |
5 13
|
wceq |
β’ ( TopOpen β π ) = ( MetOpen β ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) ) |
15 |
14 1 2
|
crab |
β’ { π β TopSp β£ ( TopOpen β π ) = ( MetOpen β ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) ) } |
16 |
0 15
|
wceq |
β’ βMetSp = { π β TopSp β£ ( TopOpen β π ) = ( MetOpen β ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) ) } |