Metamath Proof Explorer


Theorem xmstopn

Description: The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses isms.j J=TopOpenK
isms.x X=BaseK
isms.d D=distKX×X
Assertion xmstopn K∞MetSpJ=MetOpenD

Proof

Step Hyp Ref Expression
1 isms.j J=TopOpenK
2 isms.x X=BaseK
3 isms.d D=distKX×X
4 1 2 3 isxms K∞MetSpKTopSpJ=MetOpenD
5 4 simprbi K∞MetSpJ=MetOpenD