| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldms |
⊢ ℂfld ∈ MetSp |
| 2 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
| 3 |
2
|
cncmet |
⊢ ( abs ∘ − ) ∈ ( CMet ‘ ℂ ) |
| 4 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 5 |
|
cnmet |
⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) |
| 6 |
|
metf |
⊢ ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) |
| 7 |
5 6
|
ax-mp |
⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ |
| 8 |
|
ffn |
⊢ ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ → ( abs ∘ − ) Fn ( ℂ × ℂ ) ) |
| 9 |
|
fnresdm |
⊢ ( ( abs ∘ − ) Fn ( ℂ × ℂ ) → ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) ) |
| 10 |
7 8 9
|
mp2b |
⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) |
| 11 |
|
cnfldds |
⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
| 12 |
11
|
reseq1i |
⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
| 13 |
10 12
|
eqtr3i |
⊢ ( abs ∘ − ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
| 14 |
4 13
|
iscms |
⊢ ( ℂfld ∈ CMetSp ↔ ( ℂfld ∈ MetSp ∧ ( abs ∘ − ) ∈ ( CMet ‘ ℂ ) ) ) |
| 15 |
1 3 14
|
mpbir2an |
⊢ ℂfld ∈ CMetSp |