Metamath Proof Explorer


Theorem restcls

Description: A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Hypotheses restcls.1 X=J
restcls.2 K=J𝑡Y
Assertion restcls JTopYXSYclsKS=clsJSY

Proof

Step Hyp Ref Expression
1 restcls.1 X=J
2 restcls.2 K=J𝑡Y
3 simp1 JTopYXSYJTop
4 sstr SYYXSX
5 4 ancoms YXSYSX
6 5 3adant1 JTopYXSYSX
7 1 clscld JTopSXclsJSClsdJ
8 3 6 7 syl2anc JTopYXSYclsJSClsdJ
9 eqid clsJSY=clsJSY
10 ineq1 x=clsJSxY=clsJSY
11 10 rspceeqv clsJSClsdJclsJSY=clsJSYxClsdJclsJSY=xY
12 8 9 11 sylancl JTopYXSYxClsdJclsJSY=xY
13 2 fveq2i ClsdK=ClsdJ𝑡Y
14 13 eleq2i clsJSYClsdKclsJSYClsdJ𝑡Y
15 1 restcld JTopYXclsJSYClsdJ𝑡YxClsdJclsJSY=xY
16 15 3adant3 JTopYXSYclsJSYClsdJ𝑡YxClsdJclsJSY=xY
17 14 16 bitrid JTopYXSYclsJSYClsdKxClsdJclsJSY=xY
18 12 17 mpbird JTopYXSYclsJSYClsdK
19 1 sscls JTopSXSclsJS
20 3 6 19 syl2anc JTopYXSYSclsJS
21 simp3 JTopYXSYSY
22 20 21 ssind JTopYXSYSclsJSY
23 eqid K=K
24 23 clsss2 clsJSYClsdKSclsJSYclsKSclsJSY
25 18 22 24 syl2anc JTopYXSYclsKSclsJSY
26 2 fveq2i clsK=clsJ𝑡Y
27 26 fveq1i clsKS=clsJ𝑡YS
28 id YXYX
29 1 topopn JTopXJ
30 ssexg YXXJYV
31 28 29 30 syl2anr JTopYXYV
32 resttop JTopYVJ𝑡YTop
33 31 32 syldan JTopYXJ𝑡YTop
34 33 3adant3 JTopYXSYJ𝑡YTop
35 1 restuni JTopYXY=J𝑡Y
36 35 3adant3 JTopYXSYY=J𝑡Y
37 21 36 sseqtrd JTopYXSYSJ𝑡Y
38 eqid J𝑡Y=J𝑡Y
39 38 clscld J𝑡YTopSJ𝑡YclsJ𝑡YSClsdJ𝑡Y
40 34 37 39 syl2anc JTopYXSYclsJ𝑡YSClsdJ𝑡Y
41 27 40 eqeltrid JTopYXSYclsKSClsdJ𝑡Y
42 1 restcld JTopYXclsKSClsdJ𝑡YxClsdJclsKS=xY
43 42 3adant3 JTopYXSYclsKSClsdJ𝑡YxClsdJclsKS=xY
44 41 43 mpbid JTopYXSYxClsdJclsKS=xY
45 2 33 eqeltrid JTopYXKTop
46 45 3adant3 JTopYXSYKTop
47 2 unieqi K=J𝑡Y
48 47 eqcomi J𝑡Y=K
49 48 sscls KTopSJ𝑡YSclsKS
50 46 37 49 syl2anc JTopYXSYSclsKS
51 50 adantr JTopYXSYxClsdJclsKS=xYSclsKS
52 inss1 xYx
53 sseq1 clsKS=xYclsKSxxYx
54 52 53 mpbiri clsKS=xYclsKSx
55 54 ad2antll JTopYXSYxClsdJclsKS=xYclsKSx
56 51 55 sstrd JTopYXSYxClsdJclsKS=xYSx
57 1 clsss2 xClsdJSxclsJSx
58 57 adantl JTopYXSYxClsdJSxclsJSx
59 58 ssrind JTopYXSYxClsdJSxclsJSYxY
60 sseq2 clsKS=xYclsJSYclsKSclsJSYxY
61 59 60 syl5ibrcom JTopYXSYxClsdJSxclsKS=xYclsJSYclsKS
62 61 expr JTopYXSYxClsdJSxclsKS=xYclsJSYclsKS
63 62 com23 JTopYXSYxClsdJclsKS=xYSxclsJSYclsKS
64 63 impr JTopYXSYxClsdJclsKS=xYSxclsJSYclsKS
65 56 64 mpd JTopYXSYxClsdJclsKS=xYclsJSYclsKS
66 44 65 rexlimddv JTopYXSYclsJSYclsKS
67 25 66 eqssd JTopYXSYclsKS=clsJSY