Description: A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010) (Revised by Mario Carneiro, 15-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | restcls.1 | |
|
restcls.2 | |
||
Assertion | restcls | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restcls.1 | |
|
2 | restcls.2 | |
|
3 | simp1 | |
|
4 | sstr | |
|
5 | 4 | ancoms | |
6 | 5 | 3adant1 | |
7 | 1 | clscld | |
8 | 3 6 7 | syl2anc | |
9 | eqid | |
|
10 | ineq1 | |
|
11 | 10 | rspceeqv | |
12 | 8 9 11 | sylancl | |
13 | 2 | fveq2i | |
14 | 13 | eleq2i | |
15 | 1 | restcld | |
16 | 15 | 3adant3 | |
17 | 14 16 | bitrid | |
18 | 12 17 | mpbird | |
19 | 1 | sscls | |
20 | 3 6 19 | syl2anc | |
21 | simp3 | |
|
22 | 20 21 | ssind | |
23 | eqid | |
|
24 | 23 | clsss2 | |
25 | 18 22 24 | syl2anc | |
26 | 2 | fveq2i | |
27 | 26 | fveq1i | |
28 | id | |
|
29 | 1 | topopn | |
30 | ssexg | |
|
31 | 28 29 30 | syl2anr | |
32 | resttop | |
|
33 | 31 32 | syldan | |
34 | 33 | 3adant3 | |
35 | 1 | restuni | |
36 | 35 | 3adant3 | |
37 | 21 36 | sseqtrd | |
38 | eqid | |
|
39 | 38 | clscld | |
40 | 34 37 39 | syl2anc | |
41 | 27 40 | eqeltrid | |
42 | 1 | restcld | |
43 | 42 | 3adant3 | |
44 | 41 43 | mpbid | |
45 | 2 33 | eqeltrid | |
46 | 45 | 3adant3 | |
47 | 2 | unieqi | |
48 | 47 | eqcomi | |
49 | 48 | sscls | |
50 | 46 37 49 | syl2anc | |
51 | 50 | adantr | |
52 | inss1 | |
|
53 | sseq1 | |
|
54 | 52 53 | mpbiri | |
55 | 54 | ad2antll | |
56 | 51 55 | sstrd | |
57 | 1 | clsss2 | |
58 | 57 | adantl | |
59 | 58 | ssrind | |
60 | sseq2 | |
|
61 | 59 60 | syl5ibrcom | |
62 | 61 | expr | |
63 | 62 | com23 | |
64 | 63 | impr | |
65 | 56 64 | mpd | |
66 | 44 65 | rexlimddv | |
67 | 25 66 | eqssd | |