Description: A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009) (Proof shortened by Mario Carneiro, 15-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | restcld.1 | |
|
Assertion | restcld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restcld.1 | |
|
2 | id | |
|
3 | 1 | topopn | |
4 | ssexg | |
|
5 | 2 3 4 | syl2anr | |
6 | resttop | |
|
7 | 5 6 | syldan | |
8 | eqid | |
|
9 | 8 | iscld | |
10 | 7 9 | syl | |
11 | 1 | restuni | |
12 | 11 | sseq2d | |
13 | 11 | difeq1d | |
14 | 13 | eleq1d | |
15 | 12 14 | anbi12d | |
16 | elrest | |
|
17 | 5 16 | syldan | |
18 | 17 | anbi2d | |
19 | 1 | opncld | |
20 | 19 | ad5ant14 | |
21 | incom | |
|
22 | df-ss | |
|
23 | 22 | biimpi | |
24 | 21 23 | eqtrid | |
25 | 24 | ad4antlr | |
26 | 25 | difeq1d | |
27 | difeq2 | |
|
28 | difindi | |
|
29 | difid | |
|
30 | 29 | uneq2i | |
31 | un0 | |
|
32 | 28 30 31 | 3eqtri | |
33 | 27 32 | eqtrdi | |
34 | 33 | adantl | |
35 | dfss4 | |
|
36 | 35 | biimpi | |
37 | 36 | ad3antlr | |
38 | 26 34 37 | 3eqtr2rd | |
39 | 21 | difeq1i | |
40 | indif2 | |
|
41 | incom | |
|
42 | 39 40 41 | 3eqtr2i | |
43 | 38 42 | eqtrdi | |
44 | ineq1 | |
|
45 | 44 | rspceeqv | |
46 | 20 43 45 | syl2anc | |
47 | 46 | rexlimdva2 | |
48 | 47 | expimpd | |
49 | 18 48 | sylbid | |
50 | difindi | |
|
51 | 29 | uneq2i | |
52 | un0 | |
|
53 | 50 51 52 | 3eqtri | |
54 | difin2 | |
|
55 | 54 | adantl | |
56 | 53 55 | eqtrid | |
57 | 56 | adantr | |
58 | simpll | |
|
59 | 5 | adantr | |
60 | 1 | cldopn | |
61 | 60 | adantl | |
62 | elrestr | |
|
63 | 58 59 61 62 | syl3anc | |
64 | 57 63 | eqeltrd | |
65 | inss2 | |
|
66 | 64 65 | jctil | |
67 | sseq1 | |
|
68 | difeq2 | |
|
69 | 68 | eleq1d | |
70 | 67 69 | anbi12d | |
71 | 66 70 | syl5ibrcom | |
72 | 71 | rexlimdva | |
73 | 49 72 | impbid | |
74 | 10 15 73 | 3bitr2d | |