Metamath Proof Explorer


Theorem restcld

Description: A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009) (Proof shortened by Mario Carneiro, 15-Dec-2013)

Ref Expression
Hypothesis restcld.1 X=J
Assertion restcld JTopSXAClsdJ𝑡SxClsdJA=xS

Proof

Step Hyp Ref Expression
1 restcld.1 X=J
2 id SXSX
3 1 topopn JTopXJ
4 ssexg SXXJSV
5 2 3 4 syl2anr JTopSXSV
6 resttop JTopSVJ𝑡STop
7 5 6 syldan JTopSXJ𝑡STop
8 eqid J𝑡S=J𝑡S
9 8 iscld J𝑡STopAClsdJ𝑡SAJ𝑡SJ𝑡SAJ𝑡S
10 7 9 syl JTopSXAClsdJ𝑡SAJ𝑡SJ𝑡SAJ𝑡S
11 1 restuni JTopSXS=J𝑡S
12 11 sseq2d JTopSXASAJ𝑡S
13 11 difeq1d JTopSXSA=J𝑡SA
14 13 eleq1d JTopSXSAJ𝑡SJ𝑡SAJ𝑡S
15 12 14 anbi12d JTopSXASSAJ𝑡SAJ𝑡SJ𝑡SAJ𝑡S
16 elrest JTopSVSAJ𝑡SoJSA=oS
17 5 16 syldan JTopSXSAJ𝑡SoJSA=oS
18 17 anbi2d JTopSXASSAJ𝑡SASoJSA=oS
19 1 opncld JTopoJXoClsdJ
20 19 ad5ant14 JTopSXASoJSA=oSXoClsdJ
21 incom XS=SX
22 df-ss SXSX=S
23 22 biimpi SXSX=S
24 21 23 eqtrid SXXS=S
25 24 ad4antlr JTopSXASoJSA=oSXS=S
26 25 difeq1d JTopSXASoJSA=oSXSo=So
27 difeq2 SA=oSSSA=SoS
28 difindi SoS=SoSS
29 difid SS=
30 29 uneq2i SoSS=So
31 un0 So=So
32 28 30 31 3eqtri SoS=So
33 27 32 eqtrdi SA=oSSSA=So
34 33 adantl JTopSXASoJSA=oSSSA=So
35 dfss4 ASSSA=A
36 35 biimpi ASSSA=A
37 36 ad3antlr JTopSXASoJSA=oSSSA=A
38 26 34 37 3eqtr2rd JTopSXASoJSA=oSA=XSo
39 21 difeq1i XSo=SXo
40 indif2 SXo=SXo
41 incom SXo=XoS
42 39 40 41 3eqtr2i XSo=XoS
43 38 42 eqtrdi JTopSXASoJSA=oSA=XoS
44 ineq1 x=XoxS=XoS
45 44 rspceeqv XoClsdJA=XoSxClsdJA=xS
46 20 43 45 syl2anc JTopSXASoJSA=oSxClsdJA=xS
47 46 rexlimdva2 JTopSXASoJSA=oSxClsdJA=xS
48 47 expimpd JTopSXASoJSA=oSxClsdJA=xS
49 18 48 sylbid JTopSXASSAJ𝑡SxClsdJA=xS
50 difindi SxS=SxSS
51 29 uneq2i SxSS=Sx
52 un0 Sx=Sx
53 50 51 52 3eqtri SxS=Sx
54 difin2 SXSx=XxS
55 54 adantl JTopSXSx=XxS
56 53 55 eqtrid JTopSXSxS=XxS
57 56 adantr JTopSXxClsdJSxS=XxS
58 simpll JTopSXxClsdJJTop
59 5 adantr JTopSXxClsdJSV
60 1 cldopn xClsdJXxJ
61 60 adantl JTopSXxClsdJXxJ
62 elrestr JTopSVXxJXxSJ𝑡S
63 58 59 61 62 syl3anc JTopSXxClsdJXxSJ𝑡S
64 57 63 eqeltrd JTopSXxClsdJSxSJ𝑡S
65 inss2 xSS
66 64 65 jctil JTopSXxClsdJxSSSxSJ𝑡S
67 sseq1 A=xSASxSS
68 difeq2 A=xSSA=SxS
69 68 eleq1d A=xSSAJ𝑡SSxSJ𝑡S
70 67 69 anbi12d A=xSASSAJ𝑡SxSSSxSJ𝑡S
71 66 70 syl5ibrcom JTopSXxClsdJA=xSASSAJ𝑡S
72 71 rexlimdva JTopSXxClsdJA=xSASSAJ𝑡S
73 49 72 impbid JTopSXASSAJ𝑡SxClsdJA=xS
74 10 15 73 3bitr2d JTopSXAClsdJ𝑡SxClsdJA=xS