Metamath Proof Explorer


Theorem difeq2

Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion difeq2 A=BCA=CB

Proof

Step Hyp Ref Expression
1 eleq2 A=BxAxB
2 1 notbid A=B¬xA¬xB
3 2 rabbidv A=BxC|¬xA=xC|¬xB
4 dfdif2 CA=xC|¬xA
5 dfdif2 CB=xC|¬xB
6 3 4 5 3eqtr4g A=BCA=CB