Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difeq2 | |- ( A = B -> ( C \ A ) = ( C \ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | |- ( A = B -> ( x e. A <-> x e. B ) ) |
|
| 2 | 1 | notbid | |- ( A = B -> ( -. x e. A <-> -. x e. B ) ) |
| 3 | 2 | rabbidv | |- ( A = B -> { x e. C | -. x e. A } = { x e. C | -. x e. B } ) |
| 4 | dfdif2 | |- ( C \ A ) = { x e. C | -. x e. A } |
|
| 5 | dfdif2 | |- ( C \ B ) = { x e. C | -. x e. B } |
|
| 6 | 3 4 5 | 3eqtr4g | |- ( A = B -> ( C \ A ) = ( C \ B ) ) |