Metamath Proof Explorer


Theorem restcld

Description: A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009) (Proof shortened by Mario Carneiro, 15-Dec-2013)

Ref Expression
Hypothesis restcld.1
|- X = U. J
Assertion restcld
|- ( ( J e. Top /\ S C_ X ) -> ( A e. ( Clsd ` ( J |`t S ) ) <-> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) )

Proof

Step Hyp Ref Expression
1 restcld.1
 |-  X = U. J
2 id
 |-  ( S C_ X -> S C_ X )
3 1 topopn
 |-  ( J e. Top -> X e. J )
4 ssexg
 |-  ( ( S C_ X /\ X e. J ) -> S e. _V )
5 2 3 4 syl2anr
 |-  ( ( J e. Top /\ S C_ X ) -> S e. _V )
6 resttop
 |-  ( ( J e. Top /\ S e. _V ) -> ( J |`t S ) e. Top )
7 5 6 syldan
 |-  ( ( J e. Top /\ S C_ X ) -> ( J |`t S ) e. Top )
8 eqid
 |-  U. ( J |`t S ) = U. ( J |`t S )
9 8 iscld
 |-  ( ( J |`t S ) e. Top -> ( A e. ( Clsd ` ( J |`t S ) ) <-> ( A C_ U. ( J |`t S ) /\ ( U. ( J |`t S ) \ A ) e. ( J |`t S ) ) ) )
10 7 9 syl
 |-  ( ( J e. Top /\ S C_ X ) -> ( A e. ( Clsd ` ( J |`t S ) ) <-> ( A C_ U. ( J |`t S ) /\ ( U. ( J |`t S ) \ A ) e. ( J |`t S ) ) ) )
11 1 restuni
 |-  ( ( J e. Top /\ S C_ X ) -> S = U. ( J |`t S ) )
12 11 sseq2d
 |-  ( ( J e. Top /\ S C_ X ) -> ( A C_ S <-> A C_ U. ( J |`t S ) ) )
13 11 difeq1d
 |-  ( ( J e. Top /\ S C_ X ) -> ( S \ A ) = ( U. ( J |`t S ) \ A ) )
14 13 eleq1d
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( S \ A ) e. ( J |`t S ) <-> ( U. ( J |`t S ) \ A ) e. ( J |`t S ) ) )
15 12 14 anbi12d
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) <-> ( A C_ U. ( J |`t S ) /\ ( U. ( J |`t S ) \ A ) e. ( J |`t S ) ) ) )
16 elrest
 |-  ( ( J e. Top /\ S e. _V ) -> ( ( S \ A ) e. ( J |`t S ) <-> E. o e. J ( S \ A ) = ( o i^i S ) ) )
17 5 16 syldan
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( S \ A ) e. ( J |`t S ) <-> E. o e. J ( S \ A ) = ( o i^i S ) ) )
18 17 anbi2d
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) <-> ( A C_ S /\ E. o e. J ( S \ A ) = ( o i^i S ) ) ) )
19 1 opncld
 |-  ( ( J e. Top /\ o e. J ) -> ( X \ o ) e. ( Clsd ` J ) )
20 19 ad5ant14
 |-  ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( X \ o ) e. ( Clsd ` J ) )
21 incom
 |-  ( X i^i S ) = ( S i^i X )
22 df-ss
 |-  ( S C_ X <-> ( S i^i X ) = S )
23 22 biimpi
 |-  ( S C_ X -> ( S i^i X ) = S )
24 21 23 eqtrid
 |-  ( S C_ X -> ( X i^i S ) = S )
25 24 ad4antlr
 |-  ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( X i^i S ) = S )
26 25 difeq1d
 |-  ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( ( X i^i S ) \ o ) = ( S \ o ) )
27 difeq2
 |-  ( ( S \ A ) = ( o i^i S ) -> ( S \ ( S \ A ) ) = ( S \ ( o i^i S ) ) )
28 difindi
 |-  ( S \ ( o i^i S ) ) = ( ( S \ o ) u. ( S \ S ) )
29 difid
 |-  ( S \ S ) = (/)
30 29 uneq2i
 |-  ( ( S \ o ) u. ( S \ S ) ) = ( ( S \ o ) u. (/) )
31 un0
 |-  ( ( S \ o ) u. (/) ) = ( S \ o )
32 28 30 31 3eqtri
 |-  ( S \ ( o i^i S ) ) = ( S \ o )
33 27 32 eqtrdi
 |-  ( ( S \ A ) = ( o i^i S ) -> ( S \ ( S \ A ) ) = ( S \ o ) )
34 33 adantl
 |-  ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( S \ ( S \ A ) ) = ( S \ o ) )
35 dfss4
 |-  ( A C_ S <-> ( S \ ( S \ A ) ) = A )
36 35 biimpi
 |-  ( A C_ S -> ( S \ ( S \ A ) ) = A )
37 36 ad3antlr
 |-  ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( S \ ( S \ A ) ) = A )
38 26 34 37 3eqtr2rd
 |-  ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> A = ( ( X i^i S ) \ o ) )
39 21 difeq1i
 |-  ( ( X i^i S ) \ o ) = ( ( S i^i X ) \ o )
40 indif2
 |-  ( S i^i ( X \ o ) ) = ( ( S i^i X ) \ o )
41 incom
 |-  ( S i^i ( X \ o ) ) = ( ( X \ o ) i^i S )
42 39 40 41 3eqtr2i
 |-  ( ( X i^i S ) \ o ) = ( ( X \ o ) i^i S )
43 38 42 eqtrdi
 |-  ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> A = ( ( X \ o ) i^i S ) )
44 ineq1
 |-  ( x = ( X \ o ) -> ( x i^i S ) = ( ( X \ o ) i^i S ) )
45 44 rspceeqv
 |-  ( ( ( X \ o ) e. ( Clsd ` J ) /\ A = ( ( X \ o ) i^i S ) ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) )
46 20 43 45 syl2anc
 |-  ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) )
47 46 rexlimdva2
 |-  ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) -> ( E. o e. J ( S \ A ) = ( o i^i S ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) )
48 47 expimpd
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ E. o e. J ( S \ A ) = ( o i^i S ) ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) )
49 18 48 sylbid
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) )
50 difindi
 |-  ( S \ ( x i^i S ) ) = ( ( S \ x ) u. ( S \ S ) )
51 29 uneq2i
 |-  ( ( S \ x ) u. ( S \ S ) ) = ( ( S \ x ) u. (/) )
52 un0
 |-  ( ( S \ x ) u. (/) ) = ( S \ x )
53 50 51 52 3eqtri
 |-  ( S \ ( x i^i S ) ) = ( S \ x )
54 difin2
 |-  ( S C_ X -> ( S \ x ) = ( ( X \ x ) i^i S ) )
55 54 adantl
 |-  ( ( J e. Top /\ S C_ X ) -> ( S \ x ) = ( ( X \ x ) i^i S ) )
56 53 55 eqtrid
 |-  ( ( J e. Top /\ S C_ X ) -> ( S \ ( x i^i S ) ) = ( ( X \ x ) i^i S ) )
57 56 adantr
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( S \ ( x i^i S ) ) = ( ( X \ x ) i^i S ) )
58 simpll
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> J e. Top )
59 5 adantr
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> S e. _V )
60 1 cldopn
 |-  ( x e. ( Clsd ` J ) -> ( X \ x ) e. J )
61 60 adantl
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( X \ x ) e. J )
62 elrestr
 |-  ( ( J e. Top /\ S e. _V /\ ( X \ x ) e. J ) -> ( ( X \ x ) i^i S ) e. ( J |`t S ) )
63 58 59 61 62 syl3anc
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( ( X \ x ) i^i S ) e. ( J |`t S ) )
64 57 63 eqeltrd
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( S \ ( x i^i S ) ) e. ( J |`t S ) )
65 inss2
 |-  ( x i^i S ) C_ S
66 64 65 jctil
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( ( x i^i S ) C_ S /\ ( S \ ( x i^i S ) ) e. ( J |`t S ) ) )
67 sseq1
 |-  ( A = ( x i^i S ) -> ( A C_ S <-> ( x i^i S ) C_ S ) )
68 difeq2
 |-  ( A = ( x i^i S ) -> ( S \ A ) = ( S \ ( x i^i S ) ) )
69 68 eleq1d
 |-  ( A = ( x i^i S ) -> ( ( S \ A ) e. ( J |`t S ) <-> ( S \ ( x i^i S ) ) e. ( J |`t S ) ) )
70 67 69 anbi12d
 |-  ( A = ( x i^i S ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) <-> ( ( x i^i S ) C_ S /\ ( S \ ( x i^i S ) ) e. ( J |`t S ) ) ) )
71 66 70 syl5ibrcom
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( A = ( x i^i S ) -> ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) ) )
72 71 rexlimdva
 |-  ( ( J e. Top /\ S C_ X ) -> ( E. x e. ( Clsd ` J ) A = ( x i^i S ) -> ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) ) )
73 49 72 impbid
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) <-> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) )
74 10 15 73 3bitr2d
 |-  ( ( J e. Top /\ S C_ X ) -> ( A e. ( Clsd ` ( J |`t S ) ) <-> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) )