Step |
Hyp |
Ref |
Expression |
1 |
|
restval |
|- ( ( J e. V /\ B e. W ) -> ( J |`t B ) = ran ( x e. J |-> ( x i^i B ) ) ) |
2 |
1
|
eleq2d |
|- ( ( J e. V /\ B e. W ) -> ( A e. ( J |`t B ) <-> A e. ran ( x e. J |-> ( x i^i B ) ) ) ) |
3 |
|
eqid |
|- ( x e. J |-> ( x i^i B ) ) = ( x e. J |-> ( x i^i B ) ) |
4 |
|
vex |
|- x e. _V |
5 |
4
|
inex1 |
|- ( x i^i B ) e. _V |
6 |
3 5
|
elrnmpti |
|- ( A e. ran ( x e. J |-> ( x i^i B ) ) <-> E. x e. J A = ( x i^i B ) ) |
7 |
2 6
|
bitrdi |
|- ( ( J e. V /\ B e. W ) -> ( A e. ( J |`t B ) <-> E. x e. J A = ( x i^i B ) ) ) |