Metamath Proof Explorer


Theorem elrnmpti

Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses rnmpt.1
|- F = ( x e. A |-> B )
elrnmpti.2
|- B e. _V
Assertion elrnmpti
|- ( C e. ran F <-> E. x e. A C = B )

Proof

Step Hyp Ref Expression
1 rnmpt.1
 |-  F = ( x e. A |-> B )
2 elrnmpti.2
 |-  B e. _V
3 2 rgenw
 |-  A. x e. A B e. _V
4 1 elrnmptg
 |-  ( A. x e. A B e. _V -> ( C e. ran F <-> E. x e. A C = B ) )
5 3 4 ax-mp
 |-  ( C e. ran F <-> E. x e. A C = B )