Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( J e. V -> J e. _V ) |
2 |
|
elex |
|- ( A e. W -> A e. _V ) |
3 |
|
mptexg |
|- ( J e. _V -> ( x e. J |-> ( x i^i A ) ) e. _V ) |
4 |
|
rnexg |
|- ( ( x e. J |-> ( x i^i A ) ) e. _V -> ran ( x e. J |-> ( x i^i A ) ) e. _V ) |
5 |
3 4
|
syl |
|- ( J e. _V -> ran ( x e. J |-> ( x i^i A ) ) e. _V ) |
6 |
5
|
adantr |
|- ( ( J e. _V /\ A e. _V ) -> ran ( x e. J |-> ( x i^i A ) ) e. _V ) |
7 |
|
simpl |
|- ( ( j = J /\ y = A ) -> j = J ) |
8 |
|
simpr |
|- ( ( j = J /\ y = A ) -> y = A ) |
9 |
8
|
ineq2d |
|- ( ( j = J /\ y = A ) -> ( x i^i y ) = ( x i^i A ) ) |
10 |
7 9
|
mpteq12dv |
|- ( ( j = J /\ y = A ) -> ( x e. j |-> ( x i^i y ) ) = ( x e. J |-> ( x i^i A ) ) ) |
11 |
10
|
rneqd |
|- ( ( j = J /\ y = A ) -> ran ( x e. j |-> ( x i^i y ) ) = ran ( x e. J |-> ( x i^i A ) ) ) |
12 |
|
df-rest |
|- |`t = ( j e. _V , y e. _V |-> ran ( x e. j |-> ( x i^i y ) ) ) |
13 |
11 12
|
ovmpoga |
|- ( ( J e. _V /\ A e. _V /\ ran ( x e. J |-> ( x i^i A ) ) e. _V ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |
14 |
6 13
|
mpd3an3 |
|- ( ( J e. _V /\ A e. _V ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |
15 |
1 2 14
|
syl2an |
|- ( ( J e. V /\ A e. W ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |