Metamath Proof Explorer


Theorem restval

Description: The subspace topology induced by the topology J on the set A . (Contributed by FL, 20-Sep-2010) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion restval
|- ( ( J e. V /\ A e. W ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( J e. V -> J e. _V )
2 elex
 |-  ( A e. W -> A e. _V )
3 mptexg
 |-  ( J e. _V -> ( x e. J |-> ( x i^i A ) ) e. _V )
4 rnexg
 |-  ( ( x e. J |-> ( x i^i A ) ) e. _V -> ran ( x e. J |-> ( x i^i A ) ) e. _V )
5 3 4 syl
 |-  ( J e. _V -> ran ( x e. J |-> ( x i^i A ) ) e. _V )
6 5 adantr
 |-  ( ( J e. _V /\ A e. _V ) -> ran ( x e. J |-> ( x i^i A ) ) e. _V )
7 simpl
 |-  ( ( j = J /\ y = A ) -> j = J )
8 simpr
 |-  ( ( j = J /\ y = A ) -> y = A )
9 8 ineq2d
 |-  ( ( j = J /\ y = A ) -> ( x i^i y ) = ( x i^i A ) )
10 7 9 mpteq12dv
 |-  ( ( j = J /\ y = A ) -> ( x e. j |-> ( x i^i y ) ) = ( x e. J |-> ( x i^i A ) ) )
11 10 rneqd
 |-  ( ( j = J /\ y = A ) -> ran ( x e. j |-> ( x i^i y ) ) = ran ( x e. J |-> ( x i^i A ) ) )
12 df-rest
 |-  |`t = ( j e. _V , y e. _V |-> ran ( x e. j |-> ( x i^i y ) ) )
13 11 12 ovmpoga
 |-  ( ( J e. _V /\ A e. _V /\ ran ( x e. J |-> ( x i^i A ) ) e. _V ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) )
14 6 13 mpd3an3
 |-  ( ( J e. _V /\ A e. _V ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) )
15 1 2 14 syl2an
 |-  ( ( J e. V /\ A e. W ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) )