Metamath Proof Explorer


Theorem opncld

Description: The complement of an open set is closed. (Contributed by NM, 6-Oct-2006)

Ref Expression
Hypothesis iscld.1 X=J
Assertion opncld JTopSJXSClsdJ

Proof

Step Hyp Ref Expression
1 iscld.1 X=J
2 simpr JTopSJSJ
3 1 eltopss JTopSJSX
4 1 isopn2 JTopSXSJXSClsdJ
5 3 4 syldan JTopSJSJXSClsdJ
6 2 5 mpbid JTopSJXSClsdJ