Metamath Proof Explorer


Theorem clsss2

Description: If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007)

Ref Expression
Hypothesis clscld.1 X=J
Assertion clsss2 CClsdJSCclsJSC

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 cldrcl CClsdJJTop
3 2 adantr CClsdJSCJTop
4 1 cldss CClsdJCX
5 4 adantr CClsdJSCCX
6 simpr CClsdJSCSC
7 1 clsss JTopCXSCclsJSclsJC
8 3 5 6 7 syl3anc CClsdJSCclsJSclsJC
9 cldcls CClsdJclsJC=C
10 9 adantr CClsdJSCclsJC=C
11 8 10 sseqtrd CClsdJSCclsJSC