Metamath Proof Explorer


Theorem cldss

Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006) (Revised by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypothesis iscld.1 X=J
Assertion cldss SClsdJSX

Proof

Step Hyp Ref Expression
1 iscld.1 X=J
2 cldrcl SClsdJJTop
3 1 iscld JTopSClsdJSXXSJ
4 3 simprbda JTopSClsdJSX
5 2 4 mpancom SClsdJSX