Metamath Proof Explorer


Theorem clsss2

Description: If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007)

Ref Expression
Hypothesis clscld.1 𝑋 = 𝐽
Assertion clsss2 ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝐶 )

Proof

Step Hyp Ref Expression
1 clscld.1 𝑋 = 𝐽
2 cldrcl ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top )
3 2 adantr ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆𝐶 ) → 𝐽 ∈ Top )
4 1 cldss ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → 𝐶𝑋 )
5 4 adantr ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆𝐶 ) → 𝐶𝑋 )
6 simpr ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆𝐶 ) → 𝑆𝐶 )
7 1 clsss ( ( 𝐽 ∈ Top ∧ 𝐶𝑋𝑆𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) )
8 3 5 6 7 syl3anc ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) )
9 cldcls ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) = 𝐶 )
10 9 adantr ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) = 𝐶 )
11 8 10 sseqtrd ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝐶 )