Metamath Proof Explorer


Theorem clscld

Description: The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006)

Ref Expression
Hypothesis clscld.1 X = J
Assertion clscld J Top S X cls J S Clsd J

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 1 clsval J Top S X cls J S = x Clsd J | S x
3 1 topcld J Top X Clsd J
4 3 anim1i J Top S X X Clsd J S X
5 sseq2 x = X S x S X
6 5 elrab X x Clsd J | S x X Clsd J S X
7 4 6 sylibr J Top S X X x Clsd J | S x
8 7 ne0d J Top S X x Clsd J | S x
9 ssrab2 x Clsd J | S x Clsd J
10 intcld x Clsd J | S x x Clsd J | S x Clsd J x Clsd J | S x Clsd J
11 8 9 10 sylancl J Top S X x Clsd J | S x Clsd J
12 2 11 eqeltrd J Top S X cls J S Clsd J