Metamath Proof Explorer


Theorem clscld

Description: The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006)

Ref Expression
Hypothesis clscld.1 X=J
Assertion clscld JTopSXclsJSClsdJ

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 1 clsval JTopSXclsJS=xClsdJ|Sx
3 1 topcld JTopXClsdJ
4 3 anim1i JTopSXXClsdJSX
5 sseq2 x=XSxSX
6 5 elrab XxClsdJ|SxXClsdJSX
7 4 6 sylibr JTopSXXxClsdJ|Sx
8 7 ne0d JTopSXxClsdJ|Sx
9 ssrab2 xClsdJ|SxClsdJ
10 intcld xClsdJ|SxxClsdJ|SxClsdJxClsdJ|SxClsdJ
11 8 9 10 sylancl JTopSXxClsdJ|SxClsdJ
12 2 11 eqeltrd JTopSXclsJSClsdJ