Metamath Proof Explorer


Theorem intcld

Description: The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006)

Ref Expression
Assertion intcld AAClsdJAClsdJ

Proof

Step Hyp Ref Expression
1 intiin A=xAx
2 dfss3 AClsdJxAxClsdJ
3 iincld AxAxClsdJxAxClsdJ
4 2 3 sylan2b AAClsdJxAxClsdJ
5 1 4 eqeltrid AAClsdJAClsdJ