Metamath Proof Explorer


Theorem uncld

Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of Munkres p. 93. (Contributed by NM, 5-Oct-2006)

Ref Expression
Assertion uncld AClsdJBClsdJABClsdJ

Proof

Step Hyp Ref Expression
1 difundi JAB=JAJB
2 cldrcl AClsdJJTop
3 eqid J=J
4 3 cldopn AClsdJJAJ
5 3 cldopn BClsdJJBJ
6 inopn JTopJAJJBJJAJBJ
7 2 4 5 6 syl2an3an AClsdJBClsdJJAJBJ
8 1 7 eqeltrid AClsdJBClsdJJABJ
9 3 cldss AClsdJAJ
10 3 cldss BClsdJBJ
11 9 10 anim12i AClsdJBClsdJAJBJ
12 unss AJBJABJ
13 11 12 sylib AClsdJBClsdJABJ
14 3 iscld2 JTopABJABClsdJJABJ
15 2 13 14 syl2an2r AClsdJBClsdJABClsdJJABJ
16 8 15 mpbird AClsdJBClsdJABClsdJ