Metamath Proof Explorer


Theorem iincld

Description: The indexed intersection of a collection B ( x ) of closed sets is closed. Theorem 6.1(2) of Munkres p. 93. (Contributed by NM, 5-Oct-2006) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion iincld AxABClsdJxABClsdJ

Proof

Step Hyp Ref Expression
1 eqid J=J
2 1 cldss BClsdJBJ
3 dfss4 BJJJB=B
4 2 3 sylib BClsdJJJB=B
5 4 ralimi xABClsdJxAJJB=B
6 iineq2 xAJJB=BxAJJB=xAB
7 5 6 syl xABClsdJxAJJB=xAB
8 7 adantl AxABClsdJxAJJB=xAB
9 iindif2 AxAJJB=JxAJB
10 9 adantr AxABClsdJxAJJB=JxAJB
11 8 10 eqtr3d AxABClsdJxAB=JxAJB
12 r19.2z AxABClsdJxABClsdJ
13 cldrcl BClsdJJTop
14 13 rexlimivw xABClsdJJTop
15 12 14 syl AxABClsdJJTop
16 1 cldopn BClsdJJBJ
17 16 ralimi xABClsdJxAJBJ
18 17 adantl AxABClsdJxAJBJ
19 iunopn JTopxAJBJxAJBJ
20 15 18 19 syl2anc AxABClsdJxAJBJ
21 1 opncld JTopxAJBJJxAJBClsdJ
22 15 20 21 syl2anc AxABClsdJJxAJBClsdJ
23 11 22 eqeltrd AxABClsdJxABClsdJ