Metamath Proof Explorer


Theorem iineq2

Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iineq2 xAB=CxAB=xAC

Proof

Step Hyp Ref Expression
1 eleq2 B=CyByC
2 1 ralimi xAB=CxAyByC
3 ralbi xAyByCxAyBxAyC
4 2 3 syl xAB=CxAyBxAyC
5 4 abbidv xAB=Cy|xAyB=y|xAyC
6 df-iin xAB=y|xAyB
7 df-iin xAC=y|xAyC
8 5 6 7 3eqtr4g xAB=CxAB=xAC