Metamath Proof Explorer


Theorem iuneq2i

Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003)

Ref Expression
Hypothesis iuneq2i.1 xAB=C
Assertion iuneq2i xAB=xAC

Proof

Step Hyp Ref Expression
1 iuneq2i.1 xAB=C
2 iuneq2 xAB=CxAB=xAC
3 2 1 mprg xAB=xAC