Metamath Proof Explorer


Theorem iindif2

Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws" in Enderton p. 31. Use uniiun to recover Enderton's theorem. (Contributed by NM, 5-Oct-2006)

Ref Expression
Assertion iindif2 AxABC=BxAC

Proof

Step Hyp Ref Expression
1 r19.28zv AxAyB¬yCyBxA¬yC
2 eldif yBCyB¬yC
3 2 bicomi yB¬yCyBC
4 3 ralbii xAyB¬yCxAyBC
5 ralnex xA¬yC¬xAyC
6 eliun yxACxAyC
7 5 6 xchbinxr xA¬yC¬yxAC
8 7 anbi2i yBxA¬yCyB¬yxAC
9 1 4 8 3bitr3g AxAyBCyB¬yxAC
10 eliin yVyxABCxAyBC
11 10 elv yxABCxAyBC
12 eldif yBxACyB¬yxAC
13 9 11 12 3bitr4g AyxABCyBxAC
14 13 eqrdv AxABC=BxAC