Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tgioo2.1 | |
|
Assertion | tgioo2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgioo2.1 | |
|
2 | eqid | |
|
3 | cnxmet | |
|
4 | ax-resscn | |
|
5 | 1 | cnfldtopn | |
6 | eqid | |
|
7 | 2 5 6 | metrest | |
8 | 3 4 7 | mp2an | |
9 | 2 8 | tgioo | |