Metamath Proof Explorer


Theorem tgioo2

Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypothesis tgioo2.1 J=TopOpenfld
Assertion tgioo2 topGenran.=J𝑡

Proof

Step Hyp Ref Expression
1 tgioo2.1 J=TopOpenfld
2 eqid abs2=abs2
3 cnxmet abs∞Met
4 ax-resscn
5 1 cnfldtopn J=MetOpenabs
6 eqid MetOpenabs2=MetOpenabs2
7 2 5 6 metrest abs∞MetJ𝑡=MetOpenabs2
8 3 4 7 mp2an J𝑡=MetOpenabs2
9 2 8 tgioo topGenran.=J𝑡