Metamath Proof Explorer


Theorem rerest

Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypotheses tgioo2.1 J=TopOpenfld
rerest.2 R=topGenran.
Assertion rerest AJ𝑡A=R𝑡A

Proof

Step Hyp Ref Expression
1 tgioo2.1 J=TopOpenfld
2 rerest.2 R=topGenran.
3 1 tgioo2 topGenran.=J𝑡
4 2 3 eqtri R=J𝑡
5 4 oveq1i R𝑡A=J𝑡𝑡A
6 1 cnfldtop JTop
7 reex V
8 restabs JTopAVJ𝑡𝑡A=J𝑡A
9 6 7 8 mp3an13 AJ𝑡𝑡A=J𝑡A
10 5 9 eqtr2id AJ𝑡A=R𝑡A