Metamath Proof Explorer


Definition df-cms

Description: Define the class of complete metric spaces. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion df-cms CMetSp=wMetSp|[˙Basew/b]˙distwb×bCMetb

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccms classCMetSp
1 vw setvarw
2 cms classMetSp
3 cbs classBase
4 1 cv setvarw
5 4 3 cfv classBasew
6 vb setvarb
7 cds classdist
8 4 7 cfv classdistw
9 6 cv setvarb
10 9 9 cxp classb×b
11 8 10 cres classdistwb×b
12 ccmet classCMet
13 9 12 cfv classCMetb
14 11 13 wcel wffdistwb×bCMetb
15 14 6 5 wsbc wff[˙Basew/b]˙distwb×bCMetb
16 15 1 2 crab classwMetSp|[˙Basew/b]˙distwb×bCMetb
17 0 16 wceq wffCMetSp=wMetSp|[˙Basew/b]˙distwb×bCMetb