Metamath Proof Explorer


Definition df-bn

Description: Define the class of all Banach spaces. A Banach space is a normed vector space such that both the vector space and the scalar field are complete under their respective norm-induced metrics. (Contributed by NM, 5-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion df-bn Ban=wNrmVecCMetSp|ScalarwCMetSp

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbn classBan
1 vw setvarw
2 cnvc classNrmVec
3 ccms classCMetSp
4 2 3 cin classNrmVecCMetSp
5 csca classScalar
6 1 cv setvarw
7 6 5 cfv classScalarw
8 7 3 wcel wffScalarwCMetSp
9 8 1 4 crab classwNrmVecCMetSp|ScalarwCMetSp
10 0 9 wceq wffBan=wNrmVecCMetSp|ScalarwCMetSp