Metamath Proof Explorer


Theorem hoaddsubassi

Description: Associativity of sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hoaddsubass.1 R:
hoaddsubass.2 S:
hoaddsubass.3 T:
Assertion hoaddsubassi R+opS-opT=R+opS-opT

Proof

Step Hyp Ref Expression
1 hoaddsubass.1 R:
2 hoaddsubass.2 S:
3 hoaddsubass.3 T:
4 hoaddsubass R:S:T:R+opS-opT=R+opS-opT
5 1 2 3 4 mp3an R+opS-opT=R+opS-opT