Metamath Proof Explorer


Theorem hoico2

Description: Composition with the Hilbert space identity operator. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoico2 T : I op T = T

Proof

Step Hyp Ref Expression
1 dfiop2 I op = I
2 1 coeq1i I op T = I T
3 fcoi2 T : I T = T
4 2 3 eqtrid T : I op T = T