Metamath Proof Explorer


Theorem hosd2i

Description: Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hosd1.2 T:
hosd1.3 U:
Assertion hosd2i T+opU=T-opU-opU-opU

Proof

Step Hyp Ref Expression
1 hosd1.2 T:
2 hosd1.3 U:
3 1 2 hosd1i T+opU=T-op0hop-opU
4 2 hodidi U-opU=0hop
5 4 oveq1i U-opU-opU=0hop-opU
6 5 oveq2i T-opU-opU-opU=T-op0hop-opU
7 3 6 eqtr4i T+opU=T-opU-opU-opU