Metamath Proof Explorer


Theorem i2

Description: _i squared. (Contributed by NM, 6-May-1999)

Ref Expression
Assertion i2 i2=1

Proof

Step Hyp Ref Expression
1 ax-icn i
2 1 sqvali i2=ii
3 ixi ii=1
4 2 3 eqtri i2=1