Metamath Proof Explorer


Theorem ibdr

Description: Reverse of ibd . (Contributed by Rodolfo Medina, 30-Sep-2010)

Ref Expression
Hypothesis ibdr.1 φ χ ψ χ
Assertion ibdr φ χ ψ

Proof

Step Hyp Ref Expression
1 ibdr.1 φ χ ψ χ
2 1 bicomdd φ χ χ ψ
3 2 ibd φ χ ψ