Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rodolfo Medina
Partitions
prtlem100
Next ⟩
prtlem5
Metamath Proof Explorer
Ascii
Unicode
Theorem
prtlem100
Description:
Lemma for
prter3
.
(Contributed by
Rodolfo Medina
, 19-Oct-2010)
Ref
Expression
Assertion
prtlem100
⊢
∃
x
∈
A
B
∈
x
∧
φ
↔
∃
x
∈
A
∖
∅
B
∈
x
∧
φ
Proof
Step
Hyp
Ref
Expression
1
anass
⊢
x
∈
A
∧
x
≠
∅
∧
B
∈
x
∧
φ
↔
x
∈
A
∧
x
≠
∅
∧
B
∈
x
∧
φ
2
eldifsn
⊢
x
∈
A
∖
∅
↔
x
∈
A
∧
x
≠
∅
3
2
anbi1i
⊢
x
∈
A
∖
∅
∧
B
∈
x
∧
φ
↔
x
∈
A
∧
x
≠
∅
∧
B
∈
x
∧
φ
4
ne0i
⊢
B
∈
x
→
x
≠
∅
5
4
pm4.71ri
⊢
B
∈
x
↔
x
≠
∅
∧
B
∈
x
6
5
anbi1i
⊢
B
∈
x
∧
φ
↔
x
≠
∅
∧
B
∈
x
∧
φ
7
anass
⊢
x
≠
∅
∧
B
∈
x
∧
φ
↔
x
≠
∅
∧
B
∈
x
∧
φ
8
6
7
bitri
⊢
B
∈
x
∧
φ
↔
x
≠
∅
∧
B
∈
x
∧
φ
9
8
anbi2i
⊢
x
∈
A
∧
B
∈
x
∧
φ
↔
x
∈
A
∧
x
≠
∅
∧
B
∈
x
∧
φ
10
1
3
9
3bitr4ri
⊢
x
∈
A
∧
B
∈
x
∧
φ
↔
x
∈
A
∖
∅
∧
B
∈
x
∧
φ
11
10
rexbii2
⊢
∃
x
∈
A
B
∈
x
∧
φ
↔
∃
x
∈
A
∖
∅
B
∈
x
∧
φ