Metamath Proof Explorer


Theorem prtlem100

Description: Lemma for prter3 . (Contributed by Rodolfo Medina, 19-Oct-2010)

Ref Expression
Assertion prtlem100 x A B x φ x A B x φ

Proof

Step Hyp Ref Expression
1 anass x A x B x φ x A x B x φ
2 eldifsn x A x A x
3 2 anbi1i x A B x φ x A x B x φ
4 ne0i B x x
5 4 pm4.71ri B x x B x
6 5 anbi1i B x φ x B x φ
7 anass x B x φ x B x φ
8 6 7 bitri B x φ x B x φ
9 8 anbi2i x A B x φ x A x B x φ
10 1 3 9 3bitr4ri x A B x φ x A B x φ
11 10 rexbii2 x A B x φ x A B x φ