Metamath Proof Explorer


Theorem prter3

Description: For every partition there exists a unique equivalence relation whose quotient set equals the partition. (Contributed by Rodolfo Medina, 19-Oct-2010) (Proof shortened by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem18.1 ˙=xy|uAxuyu
Assertion prter3 SErAA/S=A˙=S

Proof

Step Hyp Ref Expression
1 prtlem18.1 ˙=xy|uAxuyu
2 errel SErARelS
3 2 adantr SErAA/S=ARelS
4 1 relopabiv Rel˙
5 1 prtlem13 z˙wvAzvwv
6 simpll SErAA/S=AvAzvSErA
7 simprl SErAA/S=AvAzvvA
8 ne0i zvv
9 8 ad2antll SErAA/S=AvAzvv
10 eldifsn vAvAv
11 7 9 10 sylanbrc SErAA/S=AvAzvvA
12 simplr SErAA/S=AvAzvA/S=A
13 11 12 eleqtrrd SErAA/S=AvAzvvA/S
14 simprr SErAA/S=AvAzvzv
15 qsel SErAvA/Szvv=zS
16 6 13 14 15 syl3anc SErAA/S=AvAzvv=zS
17 16 eleq2d SErAA/S=AvAzvwvwzS
18 vex wV
19 vex zV
20 18 19 elec wzSzSw
21 17 20 bitrdi SErAA/S=AvAzvwvzSw
22 21 anassrs SErAA/S=AvAzvwvzSw
23 22 pm5.32da SErAA/S=AvAzvwvzvzSw
24 23 rexbidva SErAA/S=AvAzvwvvAzvzSw
25 simpll SErAA/S=AzSwSErA
26 simpr SErAA/S=AzSwzSw
27 25 26 ercl SErAA/S=AzSwzA
28 eluni2 zAvAzv
29 27 28 sylib SErAA/S=AzSwvAzv
30 29 ex SErAA/S=AzSwvAzv
31 30 pm4.71rd SErAA/S=AzSwvAzvzSw
32 r19.41v vAzvzSwvAzvzSw
33 31 32 bitr4di SErAA/S=AzSwvAzvzSw
34 24 33 bitr4d SErAA/S=AvAzvwvzSw
35 5 34 bitrid SErAA/S=Az˙wzSw
36 35 adantl Rel˙RelSSErAA/S=Az˙wzSw
37 36 eqbrrdv2 Rel˙RelSSErAA/S=A˙=S
38 4 37 mpanl1 RelSSErAA/S=A˙=S
39 3 38 mpancom SErAA/S=A˙=S