Description: For every partition there exists a unique equivalence relation whose quotient set equals the partition. (Contributed by Rodolfo Medina, 19-Oct-2010) (Proof shortened by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prtlem18.1 | |
|
Assertion | prter3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prtlem18.1 | |
|
2 | errel | |
|
3 | 2 | adantr | |
4 | 1 | relopabiv | |
5 | 1 | prtlem13 | |
6 | simpll | |
|
7 | simprl | |
|
8 | ne0i | |
|
9 | 8 | ad2antll | |
10 | eldifsn | |
|
11 | 7 9 10 | sylanbrc | |
12 | simplr | |
|
13 | 11 12 | eleqtrrd | |
14 | simprr | |
|
15 | qsel | |
|
16 | 6 13 14 15 | syl3anc | |
17 | 16 | eleq2d | |
18 | vex | |
|
19 | vex | |
|
20 | 18 19 | elec | |
21 | 17 20 | bitrdi | |
22 | 21 | anassrs | |
23 | 22 | pm5.32da | |
24 | 23 | rexbidva | |
25 | simpll | |
|
26 | simpr | |
|
27 | 25 26 | ercl | |
28 | eluni2 | |
|
29 | 27 28 | sylib | |
30 | 29 | ex | |
31 | 30 | pm4.71rd | |
32 | r19.41v | |
|
33 | 31 32 | bitr4di | |
34 | 24 33 | bitr4d | |
35 | 5 34 | bitrid | |
36 | 35 | adantl | |
37 | 36 | eqbrrdv2 | |
38 | 4 37 | mpanl1 | |
39 | 3 38 | mpancom | |