Metamath Proof Explorer


Theorem eqbrrdv2

Description: Other version of eqbrrdiv . (Contributed by Rodolfo Medina, 30-Sep-2010)

Ref Expression
Hypothesis eqbrrdv2.1 Rel A Rel B φ x A y x B y
Assertion eqbrrdv2 Rel A Rel B φ A = B

Proof

Step Hyp Ref Expression
1 eqbrrdv2.1 Rel A Rel B φ x A y x B y
2 df-br x A y x y A
3 df-br x B y x y B
4 1 2 3 3bitr3g Rel A Rel B φ x y A x y B
5 4 eqrelrdv2 Rel A Rel B Rel A Rel B φ A = B
6 5 anabss5 Rel A Rel B φ A = B