Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rodolfo Medina
Partitions
eqbrrdv2
Next ⟩
prtlem9
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqbrrdv2
Description:
Other version of
eqbrrdiv
.
(Contributed by
Rodolfo Medina
, 30-Sep-2010)
Ref
Expression
Hypothesis
eqbrrdv2.1
⊢
Rel
⁡
A
∧
Rel
⁡
B
∧
φ
→
x
A
y
↔
x
B
y
Assertion
eqbrrdv2
⊢
Rel
⁡
A
∧
Rel
⁡
B
∧
φ
→
A
=
B
Proof
Step
Hyp
Ref
Expression
1
eqbrrdv2.1
⊢
Rel
⁡
A
∧
Rel
⁡
B
∧
φ
→
x
A
y
↔
x
B
y
2
df-br
⊢
x
A
y
↔
x
y
∈
A
3
df-br
⊢
x
B
y
↔
x
y
∈
B
4
1
2
3
3bitr3g
⊢
Rel
⁡
A
∧
Rel
⁡
B
∧
φ
→
x
y
∈
A
↔
x
y
∈
B
5
4
eqrelrdv2
⊢
Rel
⁡
A
∧
Rel
⁡
B
∧
Rel
⁡
A
∧
Rel
⁡
B
∧
φ
→
A
=
B
6
5
anabss5
⊢
Rel
⁡
A
∧
Rel
⁡
B
∧
φ
→
A
=
B