Metamath Proof Explorer


Theorem eqrelrdv2

Description: A version of eqrelrdv . (Contributed by Rodolfo Medina, 10-Oct-2010)

Ref Expression
Hypothesis eqrelrdv2.1 φ x y A x y B
Assertion eqrelrdv2 Rel A Rel B φ A = B

Proof

Step Hyp Ref Expression
1 eqrelrdv2.1 φ x y A x y B
2 1 alrimivv φ x y x y A x y B
3 eqrel Rel A Rel B A = B x y x y A x y B
4 2 3 syl5ibr Rel A Rel B φ A = B
5 4 imp Rel A Rel B φ A = B