Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
eqrelrdv2
Next ⟩
ssrelrel
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqrelrdv2
Description:
A version of
eqrelrdv
.
(Contributed by
Rodolfo Medina
, 10-Oct-2010)
Ref
Expression
Hypothesis
eqrelrdv2.1
⊢
φ
→
x
y
∈
A
↔
x
y
∈
B
Assertion
eqrelrdv2
⊢
Rel
⁡
A
∧
Rel
⁡
B
∧
φ
→
A
=
B
Proof
Step
Hyp
Ref
Expression
1
eqrelrdv2.1
⊢
φ
→
x
y
∈
A
↔
x
y
∈
B
2
1
alrimivv
⊢
φ
→
∀
x
∀
y
x
y
∈
A
↔
x
y
∈
B
3
eqrel
⊢
Rel
⁡
A
∧
Rel
⁡
B
→
A
=
B
↔
∀
x
∀
y
x
y
∈
A
↔
x
y
∈
B
4
2
3
syl5ibr
⊢
Rel
⁡
A
∧
Rel
⁡
B
→
φ
→
A
=
B
5
4
imp
⊢
Rel
⁡
A
∧
Rel
⁡
B
∧
φ
→
A
=
B