Description: A subclass relationship determined by ordered triples. Use relrelss to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ssrelrel | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | |
|
2 | 1 | alrimiv | |
3 | 2 | alrimivv | |
4 | elvvv | |
|
5 | eleq1 | |
|
6 | eleq1 | |
|
7 | 5 6 | imbi12d | |
8 | 7 | biimprcd | |
9 | 8 | alimi | |
10 | 19.23v | |
|
11 | 9 10 | sylib | |
12 | 11 | 2alimi | |
13 | 19.23vv | |
|
14 | 12 13 | sylib | |
15 | 4 14 | biimtrid | |
16 | 15 | com23 | |
17 | 16 | a2d | |
18 | 17 | alimdv | |
19 | dfss2 | |
|
20 | dfss2 | |
|
21 | 18 19 20 | 3imtr4g | |
22 | 21 | com12 | |
23 | 3 22 | impbid2 | |