Metamath Proof Explorer


Theorem ssrelrel

Description: A subclass relationship determined by ordered triples. Use relrelss to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion ssrelrel ( 𝐴 ⊆ ( ( V × V ) × V ) → ( 𝐴𝐵 ↔ ∀ 𝑥𝑦𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) )
2 1 alrimiv ( 𝐴𝐵 → ∀ 𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) )
3 2 alrimivv ( 𝐴𝐵 → ∀ 𝑥𝑦𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) )
4 elvvv ( 𝑤 ∈ ( ( V × V ) × V ) ↔ ∃ 𝑥𝑦𝑧 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ )
5 eleq1 ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( 𝑤𝐴 ↔ ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 ) )
6 eleq1 ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( 𝑤𝐵 ↔ ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) )
7 5 6 imbi12d ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( ( 𝑤𝐴𝑤𝐵 ) ↔ ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) ) )
8 7 biimprcd ( ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) → ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( 𝑤𝐴𝑤𝐵 ) ) )
9 8 alimi ( ∀ 𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) → ∀ 𝑧 ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( 𝑤𝐴𝑤𝐵 ) ) )
10 19.23v ( ∀ 𝑧 ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( 𝑤𝐴𝑤𝐵 ) ) ↔ ( ∃ 𝑧 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( 𝑤𝐴𝑤𝐵 ) ) )
11 9 10 sylib ( ∀ 𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) → ( ∃ 𝑧 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( 𝑤𝐴𝑤𝐵 ) ) )
12 11 2alimi ( ∀ 𝑥𝑦𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) → ∀ 𝑥𝑦 ( ∃ 𝑧 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( 𝑤𝐴𝑤𝐵 ) ) )
13 19.23vv ( ∀ 𝑥𝑦 ( ∃ 𝑧 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( 𝑤𝐴𝑤𝐵 ) ) ↔ ( ∃ 𝑥𝑦𝑧 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( 𝑤𝐴𝑤𝐵 ) ) )
14 12 13 sylib ( ∀ 𝑥𝑦𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) → ( ∃ 𝑥𝑦𝑧 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( 𝑤𝐴𝑤𝐵 ) ) )
15 4 14 syl5bi ( ∀ 𝑥𝑦𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) → ( 𝑤 ∈ ( ( V × V ) × V ) → ( 𝑤𝐴𝑤𝐵 ) ) )
16 15 com23 ( ∀ 𝑥𝑦𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) → ( 𝑤𝐴 → ( 𝑤 ∈ ( ( V × V ) × V ) → 𝑤𝐵 ) ) )
17 16 a2d ( ∀ 𝑥𝑦𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) → ( ( 𝑤𝐴𝑤 ∈ ( ( V × V ) × V ) ) → ( 𝑤𝐴𝑤𝐵 ) ) )
18 17 alimdv ( ∀ 𝑥𝑦𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) → ( ∀ 𝑤 ( 𝑤𝐴𝑤 ∈ ( ( V × V ) × V ) ) → ∀ 𝑤 ( 𝑤𝐴𝑤𝐵 ) ) )
19 dfss2 ( 𝐴 ⊆ ( ( V × V ) × V ) ↔ ∀ 𝑤 ( 𝑤𝐴𝑤 ∈ ( ( V × V ) × V ) ) )
20 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑤 ( 𝑤𝐴𝑤𝐵 ) )
21 18 19 20 3imtr4g ( ∀ 𝑥𝑦𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) → ( 𝐴 ⊆ ( ( V × V ) × V ) → 𝐴𝐵 ) )
22 21 com12 ( 𝐴 ⊆ ( ( V × V ) × V ) → ( ∀ 𝑥𝑦𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) → 𝐴𝐵 ) )
23 3 22 impbid2 ( 𝐴 ⊆ ( ( V × V ) × V ) → ( 𝐴𝐵 ↔ ∀ 𝑥𝑦𝑧 ( ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐴 → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∈ 𝐵 ) ) )