| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-rel | 
							⊢ ( Rel  dom  𝐴  ↔  dom  𝐴  ⊆  ( V  ×  V ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							anbi2i | 
							⊢ ( ( Rel  𝐴  ∧  Rel  dom  𝐴 )  ↔  ( Rel  𝐴  ∧  dom  𝐴  ⊆  ( V  ×  V ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							relssdmrn | 
							⊢ ( Rel  𝐴  →  𝐴  ⊆  ( dom  𝐴  ×  ran  𝐴 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ssv | 
							⊢ ran  𝐴  ⊆  V  | 
						
						
							| 5 | 
							
								
							 | 
							xpss12 | 
							⊢ ( ( dom  𝐴  ⊆  ( V  ×  V )  ∧  ran  𝐴  ⊆  V )  →  ( dom  𝐴  ×  ran  𝐴 )  ⊆  ( ( V  ×  V )  ×  V ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							mpan2 | 
							⊢ ( dom  𝐴  ⊆  ( V  ×  V )  →  ( dom  𝐴  ×  ran  𝐴 )  ⊆  ( ( V  ×  V )  ×  V ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							sylan9ss | 
							⊢ ( ( Rel  𝐴  ∧  dom  𝐴  ⊆  ( V  ×  V ) )  →  𝐴  ⊆  ( ( V  ×  V )  ×  V ) )  | 
						
						
							| 8 | 
							
								
							 | 
							xpss | 
							⊢ ( ( V  ×  V )  ×  V )  ⊆  ( V  ×  V )  | 
						
						
							| 9 | 
							
								
							 | 
							sstr | 
							⊢ ( ( 𝐴  ⊆  ( ( V  ×  V )  ×  V )  ∧  ( ( V  ×  V )  ×  V )  ⊆  ( V  ×  V ) )  →  𝐴  ⊆  ( V  ×  V ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mpan2 | 
							⊢ ( 𝐴  ⊆  ( ( V  ×  V )  ×  V )  →  𝐴  ⊆  ( V  ×  V ) )  | 
						
						
							| 11 | 
							
								
							 | 
							df-rel | 
							⊢ ( Rel  𝐴  ↔  𝐴  ⊆  ( V  ×  V ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylibr | 
							⊢ ( 𝐴  ⊆  ( ( V  ×  V )  ×  V )  →  Rel  𝐴 )  | 
						
						
							| 13 | 
							
								
							 | 
							dmss | 
							⊢ ( 𝐴  ⊆  ( ( V  ×  V )  ×  V )  →  dom  𝐴  ⊆  dom  ( ( V  ×  V )  ×  V ) )  | 
						
						
							| 14 | 
							
								
							 | 
							vn0 | 
							⊢ V  ≠  ∅  | 
						
						
							| 15 | 
							
								
							 | 
							dmxp | 
							⊢ ( V  ≠  ∅  →  dom  ( ( V  ×  V )  ×  V )  =  ( V  ×  V ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							ax-mp | 
							⊢ dom  ( ( V  ×  V )  ×  V )  =  ( V  ×  V )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							sseqtrdi | 
							⊢ ( 𝐴  ⊆  ( ( V  ×  V )  ×  V )  →  dom  𝐴  ⊆  ( V  ×  V ) )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							jca | 
							⊢ ( 𝐴  ⊆  ( ( V  ×  V )  ×  V )  →  ( Rel  𝐴  ∧  dom  𝐴  ⊆  ( V  ×  V ) ) )  | 
						
						
							| 19 | 
							
								7 18
							 | 
							impbii | 
							⊢ ( ( Rel  𝐴  ∧  dom  𝐴  ⊆  ( V  ×  V ) )  ↔  𝐴  ⊆  ( ( V  ×  V )  ×  V ) )  | 
						
						
							| 20 | 
							
								2 19
							 | 
							bitri | 
							⊢ ( ( Rel  𝐴  ∧  Rel  dom  𝐴 )  ↔  𝐴  ⊆  ( ( V  ×  V )  ×  V ) )  |