| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fal | 
							⊢ ¬  ⊥  | 
						
						
							| 2 | 
							
								
							 | 
							pm5.501 | 
							⊢ ( ⊤  →  ( ⊥  ↔  ( ⊤  ↔  ⊥ ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							mptru | 
							⊢ ( ⊥  ↔  ( ⊤  ↔  ⊥ ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							mtbi | 
							⊢ ¬  ( ⊤  ↔  ⊥ )  | 
						
						
							| 5 | 
							
								4
							 | 
							exgen | 
							⊢ ∃ 𝑦 ¬  ( ⊤  ↔  ⊥ )  | 
						
						
							| 6 | 
							
								
							 | 
							exnal | 
							⊢ ( ∃ 𝑦 ¬  ( ⊤  ↔  ⊥ )  ↔  ¬  ∀ 𝑦 ( ⊤  ↔  ⊥ ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							mpbi | 
							⊢ ¬  ∀ 𝑦 ( ⊤  ↔  ⊥ )  | 
						
						
							| 8 | 
							
								
							 | 
							df-clab | 
							⊢ ( 𝑦  ∈  { 𝑥  ∣  ⊤ }  ↔  [ 𝑦  /  𝑥 ] ⊤ )  | 
						
						
							| 9 | 
							
								
							 | 
							sbv | 
							⊢ ( [ 𝑦  /  𝑥 ] ⊤  ↔  ⊤ )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							bitr2i | 
							⊢ ( ⊤  ↔  𝑦  ∈  { 𝑥  ∣  ⊤ } )  | 
						
						
							| 11 | 
							
								
							 | 
							df-clab | 
							⊢ ( 𝑦  ∈  { 𝑥  ∣  ⊥ }  ↔  [ 𝑦  /  𝑥 ] ⊥ )  | 
						
						
							| 12 | 
							
								
							 | 
							sbv | 
							⊢ ( [ 𝑦  /  𝑥 ] ⊥  ↔  ⊥ )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							bitr2i | 
							⊢ ( ⊥  ↔  𝑦  ∈  { 𝑥  ∣  ⊥ } )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							bibi12i | 
							⊢ ( ( ⊤  ↔  ⊥ )  ↔  ( 𝑦  ∈  { 𝑥  ∣  ⊤ }  ↔  𝑦  ∈  { 𝑥  ∣  ⊥ } ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							albii | 
							⊢ ( ∀ 𝑦 ( ⊤  ↔  ⊥ )  ↔  ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  ⊤ }  ↔  𝑦  ∈  { 𝑥  ∣  ⊥ } ) )  | 
						
						
							| 16 | 
							
								7 15
							 | 
							mtbi | 
							⊢ ¬  ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  ⊤ }  ↔  𝑦  ∈  { 𝑥  ∣  ⊥ } )  | 
						
						
							| 17 | 
							
								
							 | 
							dfcleq | 
							⊢ ( { 𝑥  ∣  ⊤ }  =  { 𝑥  ∣  ⊥ }  ↔  ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  ⊤ }  ↔  𝑦  ∈  { 𝑥  ∣  ⊥ } ) )  | 
						
						
							| 18 | 
							
								
							 | 
							dfv2 | 
							⊢ V  =  { 𝑥  ∣  ⊤ }  | 
						
						
							| 19 | 
							
								18
							 | 
							eqcomi | 
							⊢ { 𝑥  ∣  ⊤ }  =  V  | 
						
						
							| 20 | 
							
								
							 | 
							dfnul4 | 
							⊢ ∅  =  { 𝑥  ∣  ⊥ }  | 
						
						
							| 21 | 
							
								20
							 | 
							eqcomi | 
							⊢ { 𝑥  ∣  ⊥ }  =  ∅  | 
						
						
							| 22 | 
							
								19 21
							 | 
							eqeq12i | 
							⊢ ( { 𝑥  ∣  ⊤ }  =  { 𝑥  ∣  ⊥ }  ↔  V  =  ∅ )  | 
						
						
							| 23 | 
							
								17 22
							 | 
							bitr3i | 
							⊢ ( ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  ⊤ }  ↔  𝑦  ∈  { 𝑥  ∣  ⊥ } )  ↔  V  =  ∅ )  | 
						
						
							| 24 | 
							
								16 23
							 | 
							mtbi | 
							⊢ ¬  V  =  ∅  | 
						
						
							| 25 | 
							
								24
							 | 
							neir | 
							⊢ V  ≠  ∅  |