Metamath Proof Explorer


Theorem eqrelrel

Description: Extensionality principle for ordered triples (used by 2-place operations df-oprab ), analogous to eqrel . Use relrelss to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008)

Ref Expression
Assertion eqrelrel ABV×V×VA=BxyzxyzAxyzB

Proof

Step Hyp Ref Expression
1 unss AV×V×VBV×V×VABV×V×V
2 ssrelrel AV×V×VABxyzxyzAxyzB
3 ssrelrel BV×V×VBAxyzxyzBxyzA
4 2 3 bi2anan9 AV×V×VBV×V×VABBAxyzxyzAxyzBxyzxyzBxyzA
5 eqss A=BABBA
6 2albiim yzxyzAxyzByzxyzAxyzByzxyzBxyzA
7 6 albii xyzxyzAxyzBxyzxyzAxyzByzxyzBxyzA
8 19.26 xyzxyzAxyzByzxyzBxyzAxyzxyzAxyzBxyzxyzBxyzA
9 7 8 bitri xyzxyzAxyzBxyzxyzAxyzBxyzxyzBxyzA
10 4 5 9 3bitr4g AV×V×VBV×V×VA=BxyzxyzAxyzB
11 1 10 sylbir ABV×V×VA=BxyzxyzAxyzB