Description: Other version of eqbrrdiv . (Contributed by Rodolfo Medina, 30-Sep-2010)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eqbrrdv2.1 | |- ( ( ( Rel A /\ Rel B ) /\ ph ) -> ( x A y <-> x B y ) ) |
|
Assertion | eqbrrdv2 | |- ( ( ( Rel A /\ Rel B ) /\ ph ) -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrrdv2.1 | |- ( ( ( Rel A /\ Rel B ) /\ ph ) -> ( x A y <-> x B y ) ) |
|
2 | df-br | |- ( x A y <-> <. x , y >. e. A ) |
|
3 | df-br | |- ( x B y <-> <. x , y >. e. B ) |
|
4 | 1 2 3 | 3bitr3g | |- ( ( ( Rel A /\ Rel B ) /\ ph ) -> ( <. x , y >. e. A <-> <. x , y >. e. B ) ) |
5 | 4 | eqrelrdv2 | |- ( ( ( Rel A /\ Rel B ) /\ ( ( Rel A /\ Rel B ) /\ ph ) ) -> A = B ) |
6 | 5 | anabss5 | |- ( ( ( Rel A /\ Rel B ) /\ ph ) -> A = B ) |