Description: Other version of eqbrrdiv . (Contributed by Rodolfo Medina, 30-Sep-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqbrrdv2.1 | |- ( ( ( Rel A /\ Rel B ) /\ ph ) -> ( x A y <-> x B y ) ) |
|
| Assertion | eqbrrdv2 | |- ( ( ( Rel A /\ Rel B ) /\ ph ) -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrrdv2.1 | |- ( ( ( Rel A /\ Rel B ) /\ ph ) -> ( x A y <-> x B y ) ) |
|
| 2 | df-br | |- ( x A y <-> <. x , y >. e. A ) |
|
| 3 | df-br | |- ( x B y <-> <. x , y >. e. B ) |
|
| 4 | 1 2 3 | 3bitr3g | |- ( ( ( Rel A /\ Rel B ) /\ ph ) -> ( <. x , y >. e. A <-> <. x , y >. e. B ) ) |
| 5 | 4 | eqrelrdv2 | |- ( ( ( Rel A /\ Rel B ) /\ ( ( Rel A /\ Rel B ) /\ ph ) ) -> A = B ) |
| 6 | 5 | anabss5 | |- ( ( ( Rel A /\ Rel B ) /\ ph ) -> A = B ) |