Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqbrrdiv.1 | |- Rel A  | 
					|
| eqbrrdiv.2 | |- Rel B  | 
					||
| eqbrrdiv.3 | |- ( ph -> ( x A y <-> x B y ) )  | 
					||
| Assertion | eqbrrdiv | |- ( ph -> A = B )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqbrrdiv.1 | |- Rel A  | 
						|
| 2 | eqbrrdiv.2 | |- Rel B  | 
						|
| 3 | eqbrrdiv.3 | |- ( ph -> ( x A y <-> x B y ) )  | 
						|
| 4 | df-br | |- ( x A y <-> <. x , y >. e. A )  | 
						|
| 5 | df-br | |- ( x B y <-> <. x , y >. e. B )  | 
						|
| 6 | 3 4 5 | 3bitr3g | |- ( ph -> ( <. x , y >. e. A <-> <. x , y >. e. B ) )  | 
						
| 7 | 1 2 6 | eqrelrdv | |- ( ph -> A = B )  |