Metamath Proof Explorer


Theorem eqbrrdv2

Description: Other version of eqbrrdiv . (Contributed by Rodolfo Medina, 30-Sep-2010)

Ref Expression
Hypothesis eqbrrdv2.1 ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑦 ) )
Assertion eqbrrdv2 ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 eqbrrdv2.1 ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑦 ) )
2 df-br ( 𝑥 𝐴 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 )
3 df-br ( 𝑥 𝐵 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 )
4 1 2 3 3bitr3g ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
5 4 eqrelrdv2 ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) ) → 𝐴 = 𝐵 )
6 5 anabss5 ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → 𝐴 = 𝐵 )