Description: Other version of eqbrrdiv . (Contributed by Rodolfo Medina, 30-Sep-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqbrrdv2.1 | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) | |
| Assertion | eqbrrdv2 | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrrdv2.1 | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) | |
| 2 | df-br | ⊢ ( 𝑥 𝐴 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) | |
| 3 | df-br | ⊢ ( 𝑥 𝐵 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) | |
| 4 | 1 2 3 | 3bitr3g | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
| 5 | 4 | eqrelrdv2 | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) ) → 𝐴 = 𝐵 ) |
| 6 | 5 | anabss5 | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → 𝐴 = 𝐵 ) |