Description: Other version of eqbrrdiv . (Contributed by Rodolfo Medina, 30-Sep-2010)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eqbrrdv2.1 | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) | |
Assertion | eqbrrdv2 | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrrdv2.1 | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) | |
2 | df-br | ⊢ ( 𝑥 𝐴 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) | |
3 | df-br | ⊢ ( 𝑥 𝐵 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) | |
4 | 1 2 3 | 3bitr3g | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
5 | 4 | eqrelrdv2 | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) ) → 𝐴 = 𝐵 ) |
6 | 5 | anabss5 | ⊢ ( ( ( Rel 𝐴 ∧ Rel 𝐵 ) ∧ 𝜑 ) → 𝐴 = 𝐵 ) |