Metamath Proof Explorer


Theorem prtlem9

Description: Lemma for prter3 . (Contributed by Rodolfo Medina, 25-Sep-2010)

Ref Expression
Assertion prtlem9 ( 𝐴𝐵 → ∃ 𝑥𝐵 [ 𝑥 ] = [ 𝐴 ] )

Proof

Step Hyp Ref Expression
1 risset ( 𝐴𝐵 ↔ ∃ 𝑥𝐵 𝑥 = 𝐴 )
2 eceq1 ( 𝑥 = 𝐴 → [ 𝑥 ] = [ 𝐴 ] )
3 2 reximi ( ∃ 𝑥𝐵 𝑥 = 𝐴 → ∃ 𝑥𝐵 [ 𝑥 ] = [ 𝐴 ] )
4 1 3 sylbi ( 𝐴𝐵 → ∃ 𝑥𝐵 [ 𝑥 ] = [ 𝐴 ] )