| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 2 |
|
simpl |
⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ∼ Er 𝐴 ) |
| 3 |
2 1
|
erref |
⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∼ 𝑧 ) |
| 4 |
|
breq1 |
⊢ ( 𝑣 = 𝑧 → ( 𝑣 ∼ 𝑧 ↔ 𝑧 ∼ 𝑧 ) ) |
| 5 |
|
breq1 |
⊢ ( 𝑣 = 𝑧 → ( 𝑣 ∼ 𝑤 ↔ 𝑧 ∼ 𝑤 ) ) |
| 6 |
4 5
|
anbi12d |
⊢ ( 𝑣 = 𝑧 → ( ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ↔ ( 𝑧 ∼ 𝑧 ∧ 𝑧 ∼ 𝑤 ) ) ) |
| 7 |
6
|
rspcev |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ∼ 𝑧 ∧ 𝑧 ∼ 𝑤 ) ) → ∃ 𝑣 ∈ 𝐴 ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) |
| 8 |
7
|
expr |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∼ 𝑧 ) → ( 𝑧 ∼ 𝑤 → ∃ 𝑣 ∈ 𝐴 ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) ) |
| 9 |
1 3 8
|
syl2anc |
⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∼ 𝑤 → ∃ 𝑣 ∈ 𝐴 ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) ) |
| 10 |
|
simplll |
⊢ ( ( ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) → ∼ Er 𝐴 ) |
| 11 |
|
simprl |
⊢ ( ( ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑣 ∼ 𝑧 ) |
| 12 |
|
simprr |
⊢ ( ( ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑣 ∼ 𝑤 ) |
| 13 |
10 11 12
|
ertr3d |
⊢ ( ( ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑧 ∼ 𝑤 ) |
| 14 |
13
|
rexlimdva2 |
⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ 𝐴 ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) → 𝑧 ∼ 𝑤 ) ) |
| 15 |
9 14
|
impbid |
⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) ) |
| 16 |
|
vex |
⊢ 𝑧 ∈ V |
| 17 |
|
vex |
⊢ 𝑣 ∈ V |
| 18 |
16 17
|
elec |
⊢ ( 𝑧 ∈ [ 𝑣 ] ∼ ↔ 𝑣 ∼ 𝑧 ) |
| 19 |
|
vex |
⊢ 𝑤 ∈ V |
| 20 |
19 17
|
elec |
⊢ ( 𝑤 ∈ [ 𝑣 ] ∼ ↔ 𝑣 ∼ 𝑤 ) |
| 21 |
18 20
|
anbi12i |
⊢ ( ( 𝑧 ∈ [ 𝑣 ] ∼ ∧ 𝑤 ∈ [ 𝑣 ] ∼ ) ↔ ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) |
| 22 |
21
|
rexbii |
⊢ ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ [ 𝑣 ] ∼ ∧ 𝑤 ∈ [ 𝑣 ] ∼ ) ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) |
| 23 |
15 22
|
bitr4di |
⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ [ 𝑣 ] ∼ ∧ 𝑤 ∈ [ 𝑣 ] ∼ ) ) ) |
| 24 |
23
|
ex |
⊢ ( ∼ Er 𝐴 → ( 𝑧 ∈ 𝐴 → ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ [ 𝑣 ] ∼ ∧ 𝑤 ∈ [ 𝑣 ] ∼ ) ) ) ) |