Metamath Proof Explorer


Theorem prtlem10

Description: Lemma for prter3 . (Contributed by Rodolfo Medina, 14-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion prtlem10
|- ( .~ Er A -> ( z e. A -> ( z .~ w <-> E. v e. A ( z e. [ v ] .~ /\ w e. [ v ] .~ ) ) ) )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( .~ Er A /\ z e. A ) -> z e. A )
2 simpl
 |-  ( ( .~ Er A /\ z e. A ) -> .~ Er A )
3 2 1 erref
 |-  ( ( .~ Er A /\ z e. A ) -> z .~ z )
4 breq1
 |-  ( v = z -> ( v .~ z <-> z .~ z ) )
5 breq1
 |-  ( v = z -> ( v .~ w <-> z .~ w ) )
6 4 5 anbi12d
 |-  ( v = z -> ( ( v .~ z /\ v .~ w ) <-> ( z .~ z /\ z .~ w ) ) )
7 6 rspcev
 |-  ( ( z e. A /\ ( z .~ z /\ z .~ w ) ) -> E. v e. A ( v .~ z /\ v .~ w ) )
8 7 expr
 |-  ( ( z e. A /\ z .~ z ) -> ( z .~ w -> E. v e. A ( v .~ z /\ v .~ w ) ) )
9 1 3 8 syl2anc
 |-  ( ( .~ Er A /\ z e. A ) -> ( z .~ w -> E. v e. A ( v .~ z /\ v .~ w ) ) )
10 simplll
 |-  ( ( ( ( .~ Er A /\ z e. A ) /\ v e. A ) /\ ( v .~ z /\ v .~ w ) ) -> .~ Er A )
11 simprl
 |-  ( ( ( ( .~ Er A /\ z e. A ) /\ v e. A ) /\ ( v .~ z /\ v .~ w ) ) -> v .~ z )
12 simprr
 |-  ( ( ( ( .~ Er A /\ z e. A ) /\ v e. A ) /\ ( v .~ z /\ v .~ w ) ) -> v .~ w )
13 10 11 12 ertr3d
 |-  ( ( ( ( .~ Er A /\ z e. A ) /\ v e. A ) /\ ( v .~ z /\ v .~ w ) ) -> z .~ w )
14 13 rexlimdva2
 |-  ( ( .~ Er A /\ z e. A ) -> ( E. v e. A ( v .~ z /\ v .~ w ) -> z .~ w ) )
15 9 14 impbid
 |-  ( ( .~ Er A /\ z e. A ) -> ( z .~ w <-> E. v e. A ( v .~ z /\ v .~ w ) ) )
16 vex
 |-  z e. _V
17 vex
 |-  v e. _V
18 16 17 elec
 |-  ( z e. [ v ] .~ <-> v .~ z )
19 vex
 |-  w e. _V
20 19 17 elec
 |-  ( w e. [ v ] .~ <-> v .~ w )
21 18 20 anbi12i
 |-  ( ( z e. [ v ] .~ /\ w e. [ v ] .~ ) <-> ( v .~ z /\ v .~ w ) )
22 21 rexbii
 |-  ( E. v e. A ( z e. [ v ] .~ /\ w e. [ v ] .~ ) <-> E. v e. A ( v .~ z /\ v .~ w ) )
23 15 22 bitr4di
 |-  ( ( .~ Er A /\ z e. A ) -> ( z .~ w <-> E. v e. A ( z e. [ v ] .~ /\ w e. [ v ] .~ ) ) )
24 23 ex
 |-  ( .~ Er A -> ( z e. A -> ( z .~ w <-> E. v e. A ( z e. [ v ] .~ /\ w e. [ v ] .~ ) ) ) )