Description: Lemma for prter2 . (Contributed by Rodolfo Medina, 12-Oct-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | prtlem11 | ⊢ ( 𝐵 ∈ 𝐷 → ( 𝐶 ∈ 𝐴 → ( 𝐵 = [ 𝐶 ] ∼ → 𝐵 ∈ ( 𝐴 / ∼ ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq1 | ⊢ ( 𝑥 = 𝐶 → [ 𝑥 ] ∼ = [ 𝐶 ] ∼ ) | |
2 | 1 | rspceeqv | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐵 = [ 𝐶 ] ∼ ) → ∃ 𝑥 ∈ 𝐴 𝐵 = [ 𝑥 ] ∼ ) |
3 | elqsg | ⊢ ( 𝐵 ∈ 𝐷 → ( 𝐵 ∈ ( 𝐴 / ∼ ) ↔ ∃ 𝑥 ∈ 𝐴 𝐵 = [ 𝑥 ] ∼ ) ) | |
4 | 2 3 | imbitrrid | ⊢ ( 𝐵 ∈ 𝐷 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐵 = [ 𝐶 ] ∼ ) → 𝐵 ∈ ( 𝐴 / ∼ ) ) ) |
5 | 4 | expd | ⊢ ( 𝐵 ∈ 𝐷 → ( 𝐶 ∈ 𝐴 → ( 𝐵 = [ 𝐶 ] ∼ → 𝐵 ∈ ( 𝐴 / ∼ ) ) ) ) |